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r ABSTRACT

spectrum estimation is presented in this report.

performance of the new algorithm.
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A new iterative algorithm for the maximum entropy power

The algorithm
which is applicable to two-dimensional signals as well as one-
dimensional signals, utilizes the computational efficiency of
the Fast Fourier Transform (FFT) algorithm and has been
empirically observed to solve the maximum entropy power spectrum

estimation problem. Examples are shown to illustrate the
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I. INTRODUCTION

The problem of power spectrum estimation (PSE) arises in
various fields such as speech processing [l], seismic signal
processing [2], image restoration [3], radar [4], sonar [5],
radio astronomy, etc., and its applications range from
identifying signal source parameters and transmission channel
characteristics to removing noise from images [3]. Consequently,
this problem has received considerable attention in the
literature and a variety of techniques for power spectrum

estimation have been developed.

One technique which has been studied extensively due to its
high resolution characteristics is the Maximum Entropy (ME)
method. For one-dimensional (1-D) signals, this method is
equivalent [7) to auto-regressive signal modelling, and thus )
it leads to a linear problem formulation that is theoretically
tractable and computationally attractive [7]. Unlike most

other PSE techniques such as the conventional methods (8,9] and

the Maximum Likelihood Method [10], however, the ME method does
not extend from 1~D signals to two-dimensiocnal (2-D) signals in
a straight-forward manner and the ME method for 2-D signal PSE

remains a highly non-linear problem.

To solve the non-linear ME PSE problem for 2-D signals,




various attempts [2,11,12,13) have been made in the literature.

In all cases, however, the algorithms are computationally
unattractive, and there is no guarantee of a solution or only
an approximate solution can be obtained. For example, Burg [1l1]
has proposed an iterative solution which requires the inversion
of a matrix in each iteration where the dimension of the matrix
is in the order of the number of the given auto-correlation
points. No experimental results using this technique have yet
been reported. As another example, Wernecke and D'Addario [12]
have proposed a scheme in which an attempt is made to numeri-
cally maximize the entropy. The maximization is done by
continuously adjusting the power spectrum (PS) estimate and
evaluating the expressions for the entropy and its gradient.

The procedure is computationally expensive and is not guaranteed
to have a solution. As a third example, Woods [2] expresses
the ME PS estimate as a power series in the frequency domain
and attempts to approximate the ME PS estimate by truncating
the power series expansion. Even though such an approach has
some computational advantages relative to others, the method is
restricted to the class of signals for which the power series
expansion is possible. Furthermore, examples have been found

in which the algorithm does not converge to the desired ME PS

estimate.




In this paper, we develop a new iterative algorithm which

is computationally simple due to its utilization of the Fast
Fourier Transform (FFT) algorithm and which leads to the true
ME power spectrum estimate for 2-D signals as well as 1-D
signals. In Section II, we review briefly previous results on
the ME PSE for 2-D signals. In Section III, we develop a new
algorithm for the ME PSE. In Section IV, we illustrate and

discuss the performance of this algorithm by way of various

examples.

II. PREVIOUS RESULTS ON ME POWER SPECTRUM ESTIMATION FOR 2-D

SIGNALS

In this section, we review briefly important previous
results relevant to this paper on the ME PSE for 2-D signals.

In reviewing these results, we use the following notations:

x(nl,nz) : a 2-D random signal whose power spectrum we
wish to estimate.

Rx(nl,nz): auto-correlation function of x(nl,nz)
ﬁx(nl,nz): an estimate of Rx(nl’n2)

Px(ml,wz): power spectrum of x(nl,nz)

ﬁx(wl,wz): an estimate of Px(wl,wz)

A(nl,nz): auto-correlation function whose power spectrum

is l/Px(wl, wz)
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: a set i i
A of points (nl,nz) for which Rx(nl,nz)
is known
F : discrete time Fourier transform
-1 . . . ,
F : inverse discrete time Fourier transform

With the above notations, the ME PSE problem can be stated

as follows:

Given Rx(nl,nz) for (nl,nz)eA,

determine Px(wl,wz) such that the entropy H given by

[
H = I J log Px(wl,wz) dwl dwz (1)
W, ==T W,==T
1 2
is maximized and
-1.-
Rx(nl,nz) =F [Px(wl,wz)l for (nl,nz)EA (2)
By rewriting Px(ml,mz) in terms of Rx(nl,nz) for (nl,nz)GA
2 . dH _
and R_(n,,n,) for (n,,n,)¢A and then setting ————Mm—— = 0
x' 1’72 1’72
de(nl,nz)

for (nl,nz)SA, it can be shown that the above problem is
equivalent to the following:
Given Rx(nl,nz) for (nl,nz)eA, determine Px(wl,wz)

such that ﬁx(ml,mz) is in the form of




. 1l
P (wyrw,) — — (3)
x T1TT2 A(nl,n2)°e Jeihy.e”I¥ R,
(nl,nz)eA
_1 ~
and Rx(nl,nz) = F [Px(ml,wz)] for (nl,nz)eA (4)

The above problem statement for the ME PSE applies, with
appropriate dimensionality changes, to all signals regardless of
their dimensionality. The solutions to the problem, however,
strongly depend on the signal dimensionality. For 1-D signals,
the mean square error minimization of the prediction filter
based on auto-regressive signal modelling requires solving a
set of linear equations for the filter coefficients and the
power spectrum obtained from the estimated filter coefficients
is identical to the ME PS estimate. For 2-D signals, this is
no longer the case. Specifically, even though minimizing the
mean square error of the auto-regressive filter still requires
solving a set of linear equations, the power spectrum obtained
from the estimated filter coefficients is not the ME PS estimate.
The reason for this can be seen by examining the form of the
normal equations for the filter coefficients in the auto-
regressive signal modelling. The derivation of the general

form of the normal equations for 2-D signals is analogous to

that for 1-D signals and is given by




2 ) a;. R (r-i, s-j) = R_(r,s) for (r,s)€B (5)
L i x ’
(i,jres *J *
where aij represents the auto-regressive filter coefficients to
be estimated, the set B consists of all points where the filter
mask has non-zero values, and the power spectrum obtained from

aij is given by

1
—3w1K —Ju, L2
e

P (wu,) = |

a e

kk,z)eB ke

From equation (5), for any non-trivial choice of B, that is if
B does not consist of a set of collinear points, the size of
independent values of Rx(nl’nZ) required to solve the above
set of equations is greater than the size of the filter mask.
For example, consider the filter mask shown in Figure 1l(a) in
which the solid dots represent the range for which aij is non-
zero. In Figure 1l(b) is shown the size of independent values of
Rx(nl’nZ) required to solve for aij in Figure l(a) by equation
(5). Clearly, the number of correlation points needed is
greater than the number of filter coefficients. Since the
estimated power spectrum given by equation (6) is completely
determined by the filter coefficients alone, it does not

possess enough degrees of freedom to satisfy equation (4) which

is required for the ME PS estimate. Due to this difficulty, a

closed form solution for the 2-D ME PSE problem has not yet
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Fig. 1. (a) First quadrant auto-regressive filter mask of size
3x2. (b) Independent auto-correlation points required to solve
the normal equations for the mask of (a).
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been found.

In the absence of a closed form solution, it is important
to know the conditions for the existence and uniqueness of the
solution. In this regard, Woods [2] has obtained the
theoretical result that if the given Rx(nl,nz) for (nl,nz)eA is
a part of some positive definite correlation function (meaning
that its Fourier transform is positive for all (wl,wz)), a
solution to the ME PSE problem exists and is unique. 1In general,
it is difficult [14] to determine if the given segment of the
correlation function is a part of some positive definite
correlation function, even though this is generally the case
in most practical problems. In this report, we assume that
the given segment of the correlation function indeed forms a

part of some positive definite correlation function so that

the solution to the ME PSE problem exists and is unique.

IIT. A NEW ITERATIVE ALGORITHM

In this section, we develop a new iterative algorithm for
the ME PS estimates which is applicable to both 1-D and 2-D
signals. This algorithm is computationally simple since it

utilizes the computational efficiency of the FFT algorithm.

————
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Suppose we are given Rx(nl,nz) for (nl,nz)eA such that

Rx(nl,nz) is a segment of some positive definite correlation
function. To find the unique ME PS estimate Px(wl,wz), we

express a power spectrum Py(ml,wz) as follows:

Py(wlrwz) = F[Rv(nl,nz)]

[ © -ju) n -jw n
= ) ] R (n),n,)-e 171, 77272 (7)
nl‘-‘-—m n_=-—o y
and ——T—l———T = F[A(n,,n,)]
Py wl,wz 1’ 2
®© ) "'j(lJ n —jw n
= ] ] anmyce 1le 22 (8)
nl::—m n2=-00

From equations (7) and (8), it is clear that Ry(nl,nz) can
be obtained from A(nl,nz) and vice versa through Fourier trans-
from operations. Now, from equations (3) and (4) Py(ml,mz) is
the unique ME PS estimate if and only if x(nl,nz) = 0 for
(nl,nz)ﬁA and Ry(nl,nz) = Rx(nl’nZ) for (nl,nz)eA. Thus, we
see that for_Py(wl,mz) to be the desired ME PS estimate, we
have a constraint on Ry(nl,nz) and a constraint on A(nl,nz).
Recognizing this, it is straight-forward to develop a simple
iterative algorithm to f£ind the unique ME PS estimate.

Specifically, we go back and forth between Ry(nl,nz) (the

correlation domain) and A(nl,nz) (the coefficient domain) and




at each time impose the constraints on Ry(nl,nz) and k(nl,nz).

Thus, starting with some initial estimate for A(nl,nz) we obtain
an estimate for Ry(nl,nz). This estimate is then corrected by
the given Rx(nl,nz) over the region A and is used to generate

a new x(nl,nz). The new A(nl,nz) is then truncated to the
desired limits and this procedure is repeated. The above
iterative procedure is illustrated in Figure 2 and forms the

basis for a new iterative algorithm for the ME PSE.

The iterative procedure discussed above is very similar
in form to other iterative techniques [15,16] that have been
successfully used in image processing. Even though the condi-
tions under which the algorithm converges are not yet known,
if the algorithm converges the converging solution satisifies
both equations (3) and (4) and consequently is the desired ME

PS estimate.

The algorithm in Figure 2 can not, in general, be used to
obtain the ME PS estimate without some modifications due to
the spectral zero crossing problem. Specifically, the .
algorithm in Figure 2 reguires two inversions of the spectral
estimates in each iteration, and chus the algorithm can not be
continued if the power spectrum estimate has a zero crossing at

any stage in the iterative procedure. Unfortunately, zero

10




INITIAL ESTIMATE OF Xn,,n,)
— R (n,n,) = F 1 {————
y 172 F [Mny o0 )l

\

k CORRECT R (n),n,) WITH R, n;,n,) FOR (n),n)) ¢A
-1 1
An,,n,) = F {—'—-}
1172 F[Ry(n],nz)]

v

Y )\(n],n2') = 0 FOR (n],nz)/A

/

P (oy,05) = FIR (n,n))

Fig. 2. A new approach to 2-D maximum entropy
(ME) power spectrum estimation (PSE).
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crossings can occur in two different ways in each iteration.

One is the correction of the correlation function and the
other is the truncation of the coefficients. To see this, let
m m

by (nl,nz) and Ry(nl'nZ) represent A(nl,nz) and Ry(nl,nz) after

mth iteration and suppose that the following conditions hold;

F[xm(nl,nz)] > 0 for all (wy,wy) (9)
F[Rr;(nl,nz)] > 0 for all (uy.w,), (10)
and 2™(n;,n,) = Fip 1 ]*w(ny,n,) (11)

m
where w(nl,nz) represents a rectangular type window such that

w(nl,nz) = 1 for (nl,nz)eA (12)

0 otherwise

Similarly, let Am+l(nl,n2) and R$+

and Ry(nl,nz) after m+lth iteration. 1In the iterative algorithm

1
(nl.nz) represent A(nl,nz)

of Figure 2, Am+l(nl,n2) and R$+l(nl,n2) are obtained from
\"(n,,n,) by

Y g, (13)

R'(n,,n,) = F
1772 m ]

m+1
R (nl,nz) Rx(nl,nz) for (nl,nz)eA

R'(nl,nz) otherwise

R'(nl,n2)+(Rx(nl,n2)-R'(nl,nz))°W(nl,n2),(14)

12




-1 1
»'(n;,n,) = F 7| )}, (15)
172 m+ 1

and xm+l(nl,n2) = X'(nl,nz) for (nl,nz)GA

0 otherwise

A (“1'“2"W(“1'n2) (16)

From equations (13)-(16), it is clear that R'(nl,nz) is

positive definite since Am(nl,nz) is assumed to be positive

definite but R$+l(nl,n2) may not be positive definite due to

the rectangular windowing w(nl,nz) in equation (14). Further-

m+1
Y

A'(nl,nz) is positive definite, Am+l(n1,n2) may not be

more, even if R (nl,nz) were positive definite so that

positive definite due to w(n1,n7) in equation (16}).

To ensure the resulting Rm+l(nl,n2) and Km+l(nl,n2) are
positive definite so that the iterations can be continued, we
make a modification to equation (14). Specifically, instead cf
forming R$+l(nl,n2) by replacing R'(nl,nz) with all its known
values, namely Rx(nl,nz) for (nl,nz)eA in equation (14), suppose

we form Rm+l (nl,nz) by linearly interpolating between the values

Y
of R'(nl,nz) and the known values of Rx(nl,nz) for (nl,nz)eA.
Then, in the modified iterative algorithm, Am+l(nl,n2) and

m+1 . m
Ry (nl,nz) are obtained from A (nl,nz) by

' - -1 1
R (nl,nz) =F [ ] (17)

F(A"(ny,n,)]

13
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= - ' - .
(nl,nz) a-R (nl,n2)+(l a) Rx(nl,nz) for (nl,nz)eA

R'(nl,nz) otherwise

R'(nl,n2)+(l~a)'(Rx(nl,nz)—R'(nl,nz))

-w(nl,nz) (18)
-1 1
'(n,,n,) =F [ ] (19)
A 172 m+1l
F[Ry (nl,nz)]
m+1 - ] .
and A (nl,nz) = A (nl,nz) W(nl,nz) (20)

Comparing equations (14) and (18), equation (18) reduces to

equation (14) when o« = 0. With any other choice of a, equation

(18) represents a non-ideal correction of R'(nl,hz) with the

known values Rx(nl,nz) for (nl,nz)eA, with a larger deviatibn

of a from zero corresponding to a more non-ideal correction.
However, with proper choice of o, the resulting Rym+l(nl,n2)

and Am+l(n1,n2) can be guaranteed to be positive definite.

This can be seen by noting that xm(nl,nz) and therefore
R'(nl,nz) are assumed to be positive definite and by considering

m+1 m+l
(nl,nz) and A (nl,nz)

a sufficiently close to 1 so that Ry
can be made arbitrarily close to R'(nl,nz) and Am(nl,nz).

Therefore by properly choosing a in the range 0 < o < 1, the

spectral zero crossing problem can be avoided and the iterations

t can be continued.

14
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From equations (13)-(16), it is clear that if xm(nl,nz) and

R?(nl,nz) satisfy equations (9)-(11), then xm+l(n1,n2) and

R m+l(nl,nz) obtained by the modified iterative algorithm also

Yy

satisfy equations (9)-(11). With proper choice of a, then,
. 0 0 e s ,

if A (nl,nz) and Ry(nl,nz), the initial estimates of x(nl,nz)
and Ry(nl,nz), satisfy equations (9)-(11), the iterations
specified by equations (9)-(12) and (17)-(20) form an

iterative algorithm. This algorithm is shown in Figure 3.

In implementing the algorithm in Figure 3, there are
several important issues that need to be discussed. One of
them is the determination of the length of the Discrete Fourier
Transform (DFT) and Inverse Discrete Fourier Transform (IDFT) to

be used for the Fourier transform and inverse Fourier transform

operations. In general, a large DFT length should be used in ]
the implementation to avoid any aliasing problem. Specifically,

the ME method of PSE is essentially an attempt to extrapolate

the correlation function beyond the limits of the known segment.

Since the DFT is used in the implementation instead of the true

Fourier transform, the length of the DFT should be chosen such

that the extended correlation function corresponding to the

ME PS estimate is essentially zero beyond the DFT limits.

Choice of the DFT length and its effect on the system perform-

ance will be further discussed in Section 1V.

15
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POSITIVE DEFINITE INITIAL ESTIMATES

Mt

WHERE 0 - o

m}

x'(n‘.n2$ . w(ﬂl,n )

Q o
Ry(nl,r\zl AND X°(a) )

RUny,ny) « O - u)IRl(n',nzl - R'(nl.n2)| . w("l’"Z)

2

) 1S CHOSEN SUCH THAT R’“":n‘,nz) AND
Y

» (n|,n } ARE POSITIVE DEFINITE

2

A

DESIRED SOLUTION "

\/

'

. Y
P‘(ul,u2l [ (nl,n2l,

Fig. 3. An iterative algorithm for 2-D
ME PSE based on Fig. 2.
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Another issue to be considered in the implementation ig
determination of Ao(nl,nz) and Rg(nl,nz), the initial estimates
of A(nl,nz) and Ry(nl,nz). Even though various different
choices are possible, one choice which is particularly simple

and satisfies equations (9)-(11) is

0 _ .
Ry(nl,nz) = Rx(0,0) d(nl,nz) (21)
and xo(n n,) = ———i———-d(n n,) (22)
1’72 Rx(0,0) 1772

where it is assumed that the region A includes the point

(n ,n2) = (0,0) and that RX(O,O) > 0. Furthermore, the choice of

1
0 0 .
A (nl,nz) and Ry(nl,nz) given by eguations (21) and (22) is

. m _ . -
reasonable in that Ry(n ,n2) = Rx(nl,nz) w(nl,nz) form 1 and

1
a = 0 in the iterative algorithm of Figure 3.

A third issue to be discussed in the implementation is how
the value of o is specifically determined in each iteration.
The choice of o is dictated by two considerations. One is the
requirement that the resulting Rym+l(nl,n2) and Am+l(nl,n2) are
positive definite. The second is our desire to choose o as
close to zero as possible so that more correction with the
known correlation points is made in each iteration. Thus, the
ideal choice of a is the smallest a in the range 0 < a < 1

for which the resulting R m+1(n ,n,) and xm+1(n ,n,) are
Y 1’72 1’72

17
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positive definite. Finding the optimum value of a, however, may
require many iterations in which we begin with o« = 0 and
successively increase o until the resulting Rym+l(nl,n2) and i
Am+1(nl,n2) are positive definite. Since each iteration requires
one DFT and one IDFT, obtaining o alone can be a significant
computational burden. Further, it has been empirically
determined that choosing the smallest o in each iteration can

lead to a limit cycle behavior where the algorithm does not

converge to the ME PS estimate.

An alternative approach to the choice of a, which avoids
the above two problems and is used in this paper, is to begin

with ag = 0 and change a in the focllowing manner;

min [F[R’ (“1’n2”] (23)

. ]
min F[(R_(n,,n.)-R'(n,,n,)) win,,n.)]
(s ) x {70y 1792 17

am+l+max[am,l-k-

if 'min [F[(Rx(nl,nz)-R'(nl,nz))°W(nl,n2)]] < 0
((-Ullw2)

and « o otherwise,

m+1

where a; represents the value of o in the ith iteration,

max[ , ] represents the maximum of the two arguments, min [ ]
(wl,wz)

represents the minimum of the argument expression over (ml,mz),

and "k" is a scalar constant with 0<k<l. Typically, "k" is

18




chosen to be 0.01, but can be increased to 1 for low S$/N ratio i
cases. When a is chosen according to equation (23), it is
straight-forward to show from equation (14) that the resulting

R m+1(nl,n2) is always positive definite. In addition, it has

Yy

. . + .
been empirically observed that the resulting A" l(nl,nz) is
almost always positive definite. 1In those rare cases when
Am+l(nl,n2) is not positive definite, a is further increased

and the iterations continue with the increased «.

Finally, another important issue to be considered in
implementing the algorithm in Figqure 3 is the decision on when
the algorithm converged so that the iteration cén be stopped.
One reasonable approach is to consider that the algorithm
has converged when the following condition is satisfied.

717  (R'(n,;,m,)-R_(n;,n,))?
1772 x 1’72

(n,,n_.)EA
1’72 < e (24)

2
R (n,,n.)
x 12
(nl,nz)eA

clearly, if ¢ = 0 and the algorithm has converged, then the
converging solution corresponds to the desired ME PS estimate.
However, due to a finite DFT length and finite precision
arthematic used, it is not possible to reduce the error

exactly to zero. A convergence decision is made when the error i

19




€ 1s very small, typically 10-4.

In Figure 4 is shown a more detailed flow chart of an

algorithm which incorporates the important implementation
issues discussed above. It is not theoretically known under
what conditions the algorithm in Figure 4 converges. As will
be discussed in the next section, however, we have empirically
observed that the algorithm always converges tq the ME PS
estimate with a sufficiently large choice of the DFT length and

a sufficiently small choice of e.
Iv. EXAMPLES AND DISCUSSIONS

In this secticn, we illustrate and discuss various
examples in which the algorithm in Figure 4 has been applied
to obtain the ME PS estimate. In all cases, it was assumed
that the correlation function originated from sinusoids buried

in white noise so that the correlation function given has the

form of
2 Moo
R (n) = ¢“-8(n)+ ) as+cos(w.n) for 1-D signals (25)
X igp 4 i
2 Mo
and Rx(nl,nz) =g -s(nl,n2)+i§l ai-cos(mil njteg, n2)
for 2~D signals (26)

where 02 represents the white noise power, M represents the

20
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GIVEN:
R)((nl,n7) . w(n‘,n?)
DFT LENGTH 'N', SCALE FACIOR 'K’
A a =00, ¢ 107
o
4 INITIAL ESTIMATE: ¢
°© R
R%(nyng) = R(0,0) - Blniny)
G _ A g
A (n‘,nz) = RX(O,O) b(nl,nz)
——
1
Rin.,n,) = »Drr{..é., -}
3 1172 m
| OFT 13" (n, ;)]
1
DEFINE: v
X, = min (DFTIRYn ,n )}
1 w0, 1172
1772 *
it _
; )(2 = min (DFT([Rx(n‘,nz) - R (n‘,n2)1~ w(n],nz))\
(u],u2)
'
b YES
F >0?

NO

KX,
, - ==

%
. - _
: Rm‘]( ) = RY Y+~ 0 - VIR (ny,n) = R'n,,n,)] * win ,n)
y e T Ry Ome1’ M2 11"2 12

1 hY

M, ) = DFT )~ e

12 {DFTIRW‘(n‘,nz)] \
y

A’““(n],nz) = Mipyny) - wlng,ny)

. 9
DFT (A" '(nl,n2)1 so2 —NO__ o -l

YESl

AN B 2
e [R‘(n‘,nz) - R (nl’“Z)]
YES ™ "2
- > ? (n‘,nz) A
AN 2
o IR‘(nl,n?H

3

1"
NO

~
P‘(u',uz) = DFT IR '(n‘,nz))

; Fig. 4. A detailed flow-chart of the iterative algorithm
} for 2-D ME PSE implemented in this paper.
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number of sinusoids, ai represents the power of the ith
sinusoid, and w; for 1-D signals and wiq and w5 for 2-D
signals represent the frequencies of the ith sinusoid.

We first consider the case of 1-D signals. For 1l-D
signals, the iterative algorithm in Figure 4 is not very useful
in obtaining the ME PS estimate due to the existence of a
simple closed form solution. However, the 1-D signal case is
ideal in illustrating that the solution obtained from the
iterative algorithm in Figure 4 indeed leads to the ME PS
estimate. In Figure 5 are shown the results obtained using the
parameters in Table 1. In Figure 5(a) are shown the results
obtained from the iterative algorithm as a function of the
number of iterations. The converging solution with the
choice of ¢ in Table 1 was obtained after 200 iterations. 1In
Figure 5(b) is shown the ME PS estimate obtained from the
closed form solution of equation (6). Figure 5(c) shows the
PS estimates obtained from the iterative algorithm (solid line)
and the closed form solution (dotted line). It is clear from
Figure 5(c) that the iterative algorithm leads to the ME PS

estimate.

As another 1-D example, Figure 6 is similar to Figure
5 except that the parameters in Table 2 were used to generate
the results. 1In addition to the above two examples, a variety

of other examples have been considered. In all cases

22
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TABLE 1

Parameters of a one-dimensional example for Figure 5.

2 2
A M o] a; wl/2ﬂ € NDFT NITR TIME
o[ 1 1.0 [1.0 0.1 1074 128 200 3 secs.
0.3456
A : size of the known auto-correlation array, j

symmetric about the origin ;

M : number of sinusoids 3

2 .
0~ : noise power
a2
i : power of ith sinusoid

w, : frequency of ith sinusoid

. e
[¥8

€ : error used for the convergence test i

NDFT : size of discrete Fourier transform used

ol Aae et At e 5

NITR : number of iterations required to reach ¢

Time the CPU time required using IBM-370 at M.I.T.

P 2« n

Lincoln Laboratory

U RSP S N P,
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(a) The PS estimate as a function of the number of
iterations (NITR). NITR = 0, 25, 50, 75, 100, 125,
150.

Fig. 5. 1-D PSE for the data in Table 1.
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Fig. 5. Continued.
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that we have considered so far, the iterative algorithm in
Figure 4 lead to the PS estimates which are visually

indistinguishable from the closed form solutions.

TABLE 2

Parameters of a one-dimensional example for Figure 6,
Notations used in the table are explained in Table 1.

A M o] a. mi/2n € NDFT NITR Time

s |1 1.0} 10| 0.1 |10 64 69 | less than 1 sec.

We now consider the case of 2-D signals. For 2-D signals,
a closed form solution for ME P3E has not yet been found and
consequently the iterative algorithm developed in this paper
has practical significance. 1In Figure 7 are shown the results
obtained using the parameters in Table 3. In Figure 7(a) is
shown the periodogram [9] obtained by Fourier transforming
Rx(nl,nz)-w(nl,nz). In Figure 7(b) is shown the PS estimate
based on auto-regressive signal modelling of equation (6) using
a backward L shaped filter mask [16]. This particular mask was
chosen due to its high performance [l16] relative to other filter

mask shapes such as symmetric and first gquadrant filters. 1In
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(a) The PS estimate as a function of NITR.

NITR = 12,

Fig. 6.

36, 48, 60.

1-D PSE for the data in Table 2.
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Figure 7(c) is shown the PS estimate obtained from the

iterative algorithm developed in this paper. To ensure that

the PS estimate shown in Figure 7(c) corresponds to the ME PS
estimate, an additional estimate was obtained using a larger

DFT size of 128 x 128 points and a much smaller e of 10-6 and

was compared to the result in Figure 7(c). The two estimates
were visually indistinguishable. It is clear from Figure 7

that the two sinusoids are resolved only in Figure 7(c), implying

that the ME method for PSE has the high resolution characteris-

tics for 2-D signals as well as 1-~D signals.

TABLE 3

Parameters of a two-dimensional example for Figure 7.

Notations used in the table are explained in Table 1.

A M o aj (wil/Zn,miz/Zﬂ) | € NDFT NITR | Time
5x5 2 1.0 1.0 0.10 0.10 1074 | 64x64 199 |75 secs.
1.0 0.20 0.3125
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In using the iterative algorithm developed in this paper,
care should be exercised in properly choosing the DFT length.
As has been discussed in Section III, a smaller aliasing error
requires a longer DFT. However, once the DFT length is chosen
so that the aliasing error is sufficiently small relative to ¢, a
further increase in the DFT length makes little improvement in
the spectral estimates, but only increases the computational
requirements. To give a rough estimate of the DFT length needed
in practice, a number of examples have been considered and the
ranges of DFT lengths required for e = lO-4 have been computed
as a function of the S/N ratic and the size of A. The S/N

ratio in dB is defined as

|2
Lo layl
S/N ratio in dB A lO-log(£—£—7—~—) (27)
)

N e~—1=

and the computed results are shown in Table 4.

TABLE 4

Typical ranges of minimum DFT size needed in practice

to achieve convergence of the algorithm in Figure 4

with € = 1074,

Size of A {
S8/N ratio 1-D Signals 2-D Signals
5 9 _ 3x3 5x5
-10 db 8-16 8-32 8x8 8x8 - 16x16
0 db 16-64 32-128 8x8 - 1l6x16 16x16 - 64x64
+10db 64-512 64-1024 32x32-256x256 64x64-512x512
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From Table 4, it is clear that cases in which the S/N ratio
is higher or the size of A is larger require longer DFTs. This
is due to the fact that the correlation functions given in
equations (25) and (26) represent more sinusoidal behavior in
region A for a higher S/N ratio or larger size of A. Therefore,
the extended correlation functions by the ME method for such
cases tend to be longer and thus require longer DFTs. To
further illustrate this point with specific examples, we have
considered a case in which 02 = 0.5 with all other parameters to
be the same as in Table 3 and another case in which the size of
A is 7x7 with all other parameters to be the same as in Table 3.

To obtain the desired ME PS estimate, both cases required the

DFT size of 128x128.

If there is significant aliasing error relative to the
€ used for the convergence test, then the algorithm does not
converge. For example, if the DFT size of 32x32 is used for
the example of Figure 7, the algorithm does not converge. 1In
such a case, the DFT length has to be increased to obtain the
ME PS estimate. If the DFT length can not be increased due
to computational constraints, e has to be increased to toler-
ate a larger aliasing error. In such a case, the resulting

PS5 estimate will only be an approximation to the ME PS

estimate.
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In general, cases in which the S/N ratio is lower or the
size of A is smaller require less computations to reach the
desired ME PS estimate for two reasons. One reason is that such
cases require shorter DFT lengths, as are clear from Table 4.
Another reason 1is that a larger noise power (02) contributes
a larger positive spectral component in the correlation correct-
ion step and the Fourier transform of a smaller rectangular
window has a smaller amplitude in its negative lobe. Thé efféct
of this is generally a smaller value of o in each iteration and
therefore more ideal correction of the correlation function in
each iteration. Consequently, for such cases, a smaller
number of iterations is required to reach the ME PS estimate.

In fact, when the S/N ratio is sufficiently low and the size of
A is sufficiently small, the value of o« can be chosen to be 0
in all iterations and the computation time can be significantly
reduced. As an example, we have considered a case in which

02 = 6.0 and size of A = 3x3 with all other parameters to be
the same as in Table 3. The computation time required in
generating the ME PS estimate for this case was 4.5 seconds of
CPU time using IBM 370 at M.I.T. Lincoln Laboratory. This is
significantly shorter than 75 seconds required to generate the

result in Figure 7(c).
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Two additional examples of 2-D ME PS estimates are

shown in Figures 8 and 9. The results in these two figures
were obtained using the parameters in Tables 5 and 6 respec-

tively.

In addition to the above examples, we have considered a
variety of others. 1In all cases that we have considered so
far, we have empirically observed that the algorithm always
converges to the ME PS estimate for a sufficiently large
choice of DFT length and a sufficiently small choice of e.
In addition, we have also observed that the ME PS estimates
for 2-D signals have high resolution characteristics similar
to the 1-D case. A more gquantitative study on the high
resolution characteristics of the ME PSE method for 2-D

signals is currently under investigation.

In this paper, we have developed a specific numerical
algorithm to estimate the power spectrum of a signal by the
ME method. Even though this algorithm led to successful
results, there is considerable room for further imporvements
of the algorithm. For example, to avoid the spectral zero
crossing problem in both the correlation domain and the
coefficient domain, we have considered a smaller correction

only in the correlation domain. An alternative approach
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TABLE 5

rParameters of a two-dimensional example for Figure 8.
Notations used in the table are explained in Table 1.

2 2 .
A M o aj (mil/2w,wi2/2n) £ NDFT NITR Time
55} 2 2.0 2.0 0.3333 0.20 10_4 64x64 71 {26.8 secs.
1.0 0.10 0.22
TABLE 6
Parameters of a two-dimensional example for Figure 9,
Notations used in the table are explained in Table 1,
AlmM 2 a’ /2 /2m) NDFT NITR| Ti .:
o] i (wil/ TeWsq £ ime %
i
7x71 3 6.0 1.0 0.10 0.10 10.4 32x32 42 5 secs.

0.30 0.10
1.0 0.20 0.20




‘g 9Tqel ut ejep 103 Isd Ad-z "8 "PTJ

‘wexbopotaad Aq dgsd JO 3ITnsay ()

S°0 veo £°0 fA)] T°0 00 T°0- z°0- €°0~ v 0- S°0-

40

. o0 |
| - eg/e,
v

5°0

(e8) Le-086T NI |




‘ponutluo) °g °brd

+193TTJ oATssaibaz~o3ne T paemydoeq ay3 uo paseq Isd IO 3Insayg  (9) ! 1
‘ - - L] -
m...o /1 | ] £€°0 2°0 T°0 0°0 1°0- z2°0~ €°0- vy 0- S0 .m
t J 1 { U l { | U
&
— .
— i'e ;
M|

2'e

[Sihuy Aptaptatuplc}

£°®

X e

22/2
+

L =

| {(a8) &-086T Nu]




v

*BTJ uT wWy3zTIObTE SATIBRISIT ay3 Kgq s3ewr3iss S4 dW

panurt3iucd 8 b1

0°0 10~ z°0-

€°0-

()

70~ $°0-

{ ! 1

.

L2/2,
+

-

[(08) e~0861 N3]

42



P
.

0

4/ Ty

‘g @1gelL UT e3Ep 103 ¥§sd 4-2

-yeipopotraead Aq IS4 3O 3 INs9Y

z'0

1°0

0°0

T°0~

)

*bta

(e)

1

T

1-9

2°e

E"®

o

L2/20
+

5@

(e6) L£-086T M|

43

£

-




‘ponuiIjuo) ‘g °*big

-193713] oarssoaboi-ojne 7 premyoeq 9y} Uo paseq IS4 JO I(nsad  (9)

R TAS

44

ﬁ\\\\\\\l\lﬂml
AL
NI
2= oo @
42/2
4

m.ol_
[(a6) Le~086T NI




*ponuijuod ‘g "HTJ

‘y *BbTd ur wWyYyatIoble 8ATIRISIAT OY3 Aq 93RWTIISD Sd AW (O)

S°0 LAY 13 Z°0 1°0 0°0 T°0~- 2°0- €0~ v o- S*0-

*0
l//_ _ T _ T
+

1°e

45

2'e

- Te-

fo& LE-086T NI




P ammme SRR .

vy

would be to perform a smaller correlation correction and a
smaller coefficient correction to avoid the spectral zero
crossing problems in the correlation and coefficient domains
respectively. Such an approach may allow more optimum choice
of the parameters such as a without significant computational |

burden. This and other ways to improve the performance of

the algorithm are currently under investigation.

Finally, in this report, we have considered the ME PSE of
only 1-D and 2-D signals. However, the iterative algorithm
developed is based on the notion that the ME PS estimate should
be consistent with the given correlation points in the region
A and the corresponding coefficients should be zero outside the
region A, which carn be applied to signals of all dimensions.
Consequently, the iterative algorithm developed in this paper
may also be useful for the ME PSE of signals whose dimensiors

are higher than two.
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